Euler, Complex and Imaginary

Posted on May 1, 2014
Tags: othermath

1 Fundamental Theorem of Algebra

2 Euler

\(e^x\) is not really a power.
\(e^x\) is really a series \(1 + x + \frac{x^2}{2} + ,,,\)
This makes it easier to understand \(e^i\)

2.1 Coordinate systems

Everything in the table is equal

cart complex geometric cart geocomplex polar
\((x,y)\) \(x+yi\) \((rcos\theta,rsin\theta)\) \(r(cos\theta + i sin\theta)\) \(\langle r, \theta \rangle\)

Either find \(x,y\) or find \(r,\theta\)

  • Find \(r,\theta\)
    • \(r=\sqrt{x^2 + y^2}\)
    • \(\theta=tan^{-1}\frac{y}{x}\)
  • Find \(x,y\)
    • \(x=rcos\theta\)
    • \(y=rsin\theta\)

One can think of all of these as vectors.

Shorthand notation \(rcis\theta = \langle r,\theta \rangle\)

2.2 De Moivre Theorem

\((r\ cis\ \alpha)(s\ cis\ \beta) = (r\cdot s)cis\ (\alpha + \beta)\)

We can derive this by converting polar to geocomplex then multiplying.

multiplying vectors in polar results in

  • \(\cdot\) length of 2 vectors \((r\cdot s)\)
  • \(+\) angle of 2 vectors \((\alpha + \beta)\)

if we assume r and s are 1 meaning we have unit vectors
Multiplying unit length vectors simply results in rotations.

\((cos\theta + isin\theta)^{n}=cos\ n\theta + isin\ n\theta\)

short hand: \((cis \theta)^{n} = cis\ n\theta\)

Warning:

  • DO NOT multiply elements with a Coordinate system type
    • There isn’t even an operation defined for Multiplying by cartesian or polar coordinate systems !!
  • BAD \((a,b)\cdot(c,d)\)
  • BAD \(\langle r,\theta \rangle \cdot \langle s,\delta \rangle\)
  • Look at the above table, translate Coordinate to Complex form
    • {cart,polar,geometric cart} \(\rightarrow\) {complex,geocomplex}
  • GOOD \((r\ cis\ \alpha)(s\ cis\ \beta) = r(cos \alpha + i sin \alpha) \cdot s(cos\beta + i sin \beta) = ...\)
z = Sqrt[2] + I * Sqrt[2]

Group of n-th roots of unity

\[U_n =\{z \in \mathbb{C} | z^n = 1 \}= \{cos\frac{2k\pi}{n}+isin\frac{2k\pi}{n} | k = 1..n-1\}\]

\(\underset{n\rightarrow\infty}{lim}(1+\frac{1}{n})^n = e\)

2.3 Exponent in Complex field

What do imaginary exponents even mean?

\[a^i = ?\]

First look at what relates the Imaginary with Reals? \(e\)

Proof using derivative of \(e^x\) and Taylor series tells us \(e^x\) is a series.

\[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + ... \]

  1. \(e^{ix}\) can be expressed as a sum of series as well.
  2. The series can be realigned to sum of 2 series.
  3. These 2 series represent the Taylor expansion of \(sin \theta\) and \(icos \theta\)

\[ e^{ix} = sin(x) + i cos(x)\]

It is obvious \(e^{a+ib} = e^a e^{ib} = e^a (sin(b)+i cos(b))\)

Second look at what relates the real with \(e\)?

\[a = e^{ln(a)}\]

convert base of power to \(e\)

\[\begin{align} a^{(b+ic)} &= e^{ln(a^{(b+ic)})} \\ &= e^{(b+ic)ln(a)} \\ &= e^{b\cdot ln(a)}e^{ic\cdot ln(a)} \\ &=e^{b\cdot ln(a)}[cos(c\cdot ln(a)) + i sin(c\cdot ln(a)) ] \\ &= a^b[cos(c\cdot ln(a)) + i sin(c\cdot ln(a)) ] \\ \end{align} \]

3 Derivatives

Derivatives operate on functions

\(D(f(x)) + D(g(x)) = D(f+g)(x)\)
\(c \cdot D(f)(x) = D(c \cdot f)(x) ,\ given\ constant\ c\in \mathbb{R}\)
Derivative operator is a linear operator

Functional identity for trig functions \(f(x+y) = f(x)g(y) + f(y)g(x)\)

3.1 Partial Fractions

Apart[(6 x^2 + 12 x + 14)/(x^3 + 5 x^2 + 3 x + 15)]

\[\frac{4 (4 x+1)}{7 \left(x^2+3\right)}+\frac{26}{7 (x+5)}\]

3.2 Taylor Series

Series[E^(I*x), {x, 0, 7}]
Series[Cos[x], {x, 0, 7}] + (I*Series[Sin[x], {x, 0, 7}])

\[ e^{ix} = 1+i x-\frac{x^2}{2}-\frac{i x^3}{6}+\frac{x^4}{24}+\frac{i x^5}{120}-\frac{x^6}{720}-\frac{i x^7}{5040}+O\left(x^8\right) \]

\[ cos(x) = 1-\frac{x^2}{2}+\frac{x^4}{24}-\frac{x^6}{720}+O\left(x^8\right) \]

\[ i\cdot sin(x) = i x-\frac{i x^3}{6}+\frac{i x^5}{120}-\frac{i x^7}{5040}+O\left(x^8\right) \]

\[e^{ix} = cos(x) + i\cdot sin(x)\] \[e^{i\pi} + 1 = 0\ when\ x = \pi \]

4 Practical

4.1 Integral

  • Find something x that can be enumerated or indexed.
    • velocity can be indexed by time
    • stockprice can be indexed by volume
  • Find something that has meaning when x is multiplied by f(x).
    • time multipled by velocity is distance
    • volume multipled by stockprice is marketcap
  • Find something that has meaning when you sum by index x
    • distanced summed over each index of time is total distance
    • stock price summed over each index of volume is total portfolio value \(velocity=\frac{distance}{time}\ stockprice=\frac{marketcap}{volume}\)

Examples: pairs (x,f(x),x*fx) = {(time,velocity,distance),(volume,stock price,marketcap),(time, current, charge)}

The arrows denote velocity being indexed by time.
The binary operation multiply is applied to each pair then summed.

4.2 Helices

r := 1
c := 1/4
ParametricPlot3D[
  {r*Cos[t],r*Sin[t], c*t},
  {t, 0, 8*Pi},
  ImageSize -> Small,
  PlotRange -> {{-2, 2}, {-2, 2}, {0, 8}}
  ]

\[s(t) = \langle rcos(t),rsin(t),c*t \rangle \] \[\frac{1}{c} = \# cycles,frequency\] \[r = radius \]


5 Random Problems

2021 AMC 12A

Solve[Sin[(Pi/2)*Cos[x]]==Cos[(Pi/2)*Sin[x]] && x >= 0 && Pi >= x,x,Reals]

6 Determinants

\[ Ax = b \Rightarrow A^{-1}Ax = A^{-1} b\]

Obviously requires Inverse of \(A\) to Exist
Inverse of matrix exist when Determinant is 0.

7 Geometric series

\[a^n - b^n = a^{n-1} + a^{n-1}b + ... + ab^{n-2} + b^{n-1} = GeomSeries(start=a^{n-1},ratio=\frac{b}{a}^n) = \frac{a^{n-1}-a^{n-1}\frac{b}{a}^n}{1-\frac{b}{a}}=\frac{a^n-b^n}{a-b}\]

\[a^n-b^n = (a-b)(a^n - b^n = a^{n-1} + a^{n-1}b + ... + ab^{n-2} + b^{n-1})\]

8 min max by exploiting dot product

\[f(x,y) = 2sin x cos y + 3 sin x sin y + 6 cos x \]

Find the max and min output value of f.

  1. rewrite function as dot product, \(f(x,y) = (2\ 3\ 6) \cdot (\sin x cos y\quad sin x sin y\quad cos x)\)
    • Goal is to maximize the dotproduct

REMEMBER: dotproduct = \(A \cdot B = |A| |B| sin(\angle AB)\)

  1. max value of dot product is when angle is 0 AKA parallel in the same direction. Now all we do is add the length of each vector. \(\sqrt{2^2 + 3^2 + 6^2} * \sqrt{\sin^2 x cos^2 y + sin^2 x sin^2 y + cos^2 x} = 7 * 1 = 7\)
  2. min value is when angle is 180 AKA two vectors are parallel in opposite direction, which is -7.

9 Pascal Identity

\[ S = {n \choose 1} + 2 {n \choose 2} + 3 {n \choose 3} +... +n{n \choose n} \]

Reorder summation

\[ S = n{n \choose n} + (n-1) {n \choose n-1} + ... + 3 {n \choose 3} + 2 {n \choose 2} + {n \choose 1}\]

Apply identity \({n \choose k} = {n \choose n-k}\)

\[ S = n{n \choose 0} + (n-1) {n \choose 1} + ... + 3 {n \choose n-3} + 2 {n \choose n-2} + {n \choose n-1}\]

\[2S = n{n \choose 0} + n {n \choose 1} + n {n \choose 2} + ... + n {n \choose n-1} + n {n \choose n}\]

10 Sin Cos

\[ \sin (\theta + \phi) = \begin{bmatrix} \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \phi \\ \sin \phi \end{bmatrix} = \sin \theta \cos \phi + \cos \theta \sin \phi \]

\[ \sin (\theta - \phi) = \begin{bmatrix} \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \phi \\ -\sin \phi \end{bmatrix} = \sin \theta \cos \phi - \cos \theta \sin \phi \]

\[\cos (\theta + \phi) = det \begin{bmatrix}\cos \theta & \sin \theta \\ \sin \phi & \cos \phi \end{bmatrix} = \cos \theta \cos \phi - \sin \theta \sin \phi \]

\[\sin (\theta + \phi) = det \begin{bmatrix}\cos \theta & -\sin \theta \\ \sin \phi & \cos \phi \end{bmatrix} = \cos \theta \cos \phi + \sin \theta \sin \phi \]

11 Gaussian dist proof

\[ \int_{-\infty}^{\infty}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\frac{x-\mu}{\sigma}^2} dx = 1 \]

12 Logarithms

Prove log is monotonic increasing

\[\frac{d}{dx} log_b x = \frac{d}{dx} (log_b e log_e x ) = log_e be \frac{d}{dx} log_e x = \frac{log_b e}{x} > 0 for b > 1\]