Import, load, FRED, TDtrade in python, R
Posted on July 1, 2015
Tags: Economics
1 import CSV data
import pandas as pd
from pathlib import Path
= Path("/home/kali/pytorch-Deep-Learning/ISLR/dataset/Advertising.csv")
mycsv =pd.read_csv(mycsv) outDF
2 import tdtrade
import pandas as pd
= "XXXXXXXXXXX"
apikey = "AAPL"
ticker = "day"
period = f"https://api.tdameritrade.com/v1/marketdata/{ticker}/pricehistory?apikey={apikey}&periodType={period}"
myurl = pd.read_json(myurl)
stkdata #Series of json eg. [{open: ,close: ...}, {open: , close: ..}
= stkdata["candles"].apply(pd.Series)
stocks #Convert Series of json to Dataframe
"datetime"] = pd.to_datetime(stocks["datetime"],origin="unix", unit="ms") stocks[
const bleh = async () => {
const rawdata = await fetch("https://api.td...").then(response => response.text())
const inter = window.atob(rawdata)
const jsondata = JSON.parse(inter)["candles"]
const tfdataframe = tf.data.array(jsondata)
}
3 R
library("fpp3")
library("fredr")
="XXXXXXXXXXXXXXXX"
FREDAPIfredr_set_key(FREDAPI)
<- fredr(
retail series_id = "CEU4200000001",
observation_start = as.Date("2010-01-01"),
observation_end = as.Date("2021-12-01")
%>%
) as_tsibble(index=date)
%>%
retail head
%>%
retail mutate(natorder = row_number())%>%
update_tsibble(index = natorder, regular = TRUE) %>%
ACF(value) %>%
autoplot()
%>%
retail mutate(natorder = row_number())%>%
update_tsibble(index = natorder, regular = TRUE) %>%
gg_lag(value, geom = "point")