Differential Equations 1
1 Intro
2 Verifying potential solution differential eqn
Differential equation is like a specificiation. Many potential solutions(equations) can fit that spec.
You must check the solution fits the spec.
- \(\frac{dy}{dx} = xy^{0.5}\)
- \(y = \frac{1}{16}x^4\)
Plug in the equation \(y = \frac{1}{16}x^4\) in the differential equation.
Result: \(\frac{d}{dx}(\frac{1}{16}x^4) ?= x(\frac{1}{16}x^4)^{0.5}\)
Check if the equality is satisfied
2.0.1 Differential Equations
Properties
- Order: order of highest derivative
- (Non)Linear:
- (ODE)PDE
- Homogeneity
2.0.1.0.1 Initial Value Problems
notation: \(y' := \frac{dy}{dx}\) \(y := y(x)\)
Given Differential Equation \[y'' - 5y' + 6y = 0\]
Solve for set of equations that satisfy Differential equation:
DSolve[y''[x] - 5*y'[x] + 6 y[x] == 0, y[x], x]
\[\left\{\left\{y(x)\to c_1 e^{2 x}+c_2 e^{3 x}\right\}\right\}\]
Given Initial conditions: \[y(0)=3\] \[y'(0)=1\] Solve by finding the specific functions that satisfy the initial condition and the given differential equation
- \(y(0)=3\)
- Plug into previous solution \(y(x)=c_1 e^{2 x}+c_2 e^{3 x}\)
- \(y(0)=c_1 +c_2 = 3\)
- \(y'(0)=2\)
- Find derivative of previous solution \(y(x)=c_1 e^{2 x}+c_2 e^{3 x}\)
- \(y'(x) = 2c_1 + 3c_2\)
- \(y'(0)=2c_1 + 3c_2 = 1\)
- Find derivative of previous solution \(y(x)=c_1 e^{2 x}+c_2 e^{3 x}\)
Solve system of linear equations for constants \(c_1\),\(c_2\)
\[ \begin{aligned} c_1 + c_2 &= 3\\ 2c_1 + 3c_2 &= 1 \end{aligned} \quad\Longleftrightarrow\quad \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \end{bmatrix}= \begin{bmatrix} \text{3} \\ \text{1} \\ \end{bmatrix} \]
= {{1, 1}, {2, 3}}
mat = {{c1}, {c2}}
vars b = {{3}, {1}}
Solve[{mat . vars == b}, {c1, c2}]
\[\{\{c_1\to 8,c_2\to -5\}\}\]
Solution: \[y = 8e^{2x}-5e^{3x}\]
2.0.2 Examples
2.0.2.0.1 Radioactive Decay , substance amount y[t]
\[\frac{dy}{dt} = -ky(t)\]
DSolve[y'[t] == -k*y[t], y[t], t] // TeXForm
\[\left\{\left\{y(t)\to c_1 e^{-k t}\right\}\right\}\]
\[y(0)=k\]
2.0.2.0.2 Uniqueness and Existence Problems
Theorem:
Given f(x,y) continous