Proof Downward Induction AM-GM
AM-GM Theorem
\[ (x_1 x_2 .. x_n)^{1/n} \leq \frac{x_1 + x_2 + .. x_n}{n} \]
1 Upward induction step 1
Base step: n = 1, obvious
Base step: n = 2, obvious
\((P(k) \rightarrow P(2k) )\):
for \(k \geq 2\) IH:
\[(x_1 x_2 .. x_k)^{1/k} \leq \frac{x_1 + x_2 + .. x_k}{k}\]
Prove P(2k) is true: \[ (x_1 x_2 .. x_{2k})^{1/2k} \leq \frac{x_1 + x_2 + .. x_{2k} }{2k} \]
Thoughts:
- Shift complexity from LHS to RHS for IH
- IH: \((x_1 x_2 .. x_k) \leq (\frac{x_1 + x_2 + .. x_k}{k})^{k}\)
- Goal: \((x_1 x_2 .. x_{2k}) \leq (\frac{x_1 + x_2 + .. x_{2k}}{2k})^{2k}\)
- Separate problem to Subproblem and Renaming
- (1..2k) to (1..k) and (k+1 ..2k)
- Renaming
- \({}^{\times}A : (x_1 x_2 .. x_k)\)
- \({}^{\times}B : (x_{k+1} x_{k+2} .. x_{2k})\)
- Goal: \({}^{\times}A \times {}^{\times}B \leq (\frac{{}^{+}A + {}^{+}B}{2k})^{2k}\)
- Apply IH to the subproblems
- \({}^{\times}A \leq (\frac{{}^{+}A}{k})^{k}\)
- \({}^{\times}B \leq (\frac{{}^{+}B}{k})^{k}\)
- Try to Build towards Goal(LHS of Goal) using IHs
- Notice multiplying both IHs works
- \({}^{\times}A \times {}^{\times}B \leq (\frac{{}^{+}A}{k})^{k} (\frac{{}^{+}B}{k})^{k} = (\frac{{}^{+}A \times {}^{+}B}{k^2})^{k}\)
- Notice multiplying both IHs works
- New Goal: Show \((\frac{{}^{+}A \times {}^{+}B}{k^2})^{k} \leq (\frac{{}^{+}A + {}^{+}B}{2k})^{2k}\)
Get stuck !! How do we show this inequality.
IMPORTANT TECHNIQUE - IH(2) meaning induction hypothesis with n=2.
Observe \((\frac{\color{red}{{}^{+}A \times {}^{+}B}}{k^2})^{k}\)
- IH(2): \(\color{red}{{}^{+}A \times {}^{+}B \leq (\frac{{}^{+}A \times {}^{+}B}{2})^{2}}\)
\((\frac{\color{red}{{}^{+}A \times {}^{+}B}}{k^2})^{k} \leq (\frac{1}{k^2})({\color{red}{(\frac{{}^{+}A \times {}^{+}B}{2})^{2}}})^{k} = (\frac{{}^{+}A + {}^{+}B}{2k})^{2k}\)
QED: \((\frac{{}^{+}A \times {}^{+}B}{k^2})^{k} \leq (\frac{{}^{+}A + {}^{+}B}{2k})^{2k}\)
Thoughts: Don’t fall in to the trap of believing IH should only be used with obvious cases like n-1, n/2
IH(2) is the crux of this proof.
2 Downward induction step 2
\((P(k) \rightarrow P(k-1) )\):
After shifting complexity LHS to RHS:
IMPORTANT WRITE OUT \(x_{n-1}\) instead of just abstracting it into the ellipse.If not you will hit a roadblock when using IH.
\(x_1 + x_2 + .. x_{n}\) is BAD.
\(x_1 + x_2 + .. x_{n-1}+x_{n}\) is GOOD.
let \(C^+ = x_1 + x_2 + ..x_{n-1}\)
let \(C^{\times} = (x_1 x_2 ..x_{n-1})\)
IH: \[ (x_1 x_2 ..x_{n-1} x_n) \leq (\frac{x_1 + x_2 + .. x_{n-1} + x_n}{n})^{n} \]
\[ (C^{\times} \times x_n) \leq (\frac{C^+ + x_n}{n})^n \tag{IH}\]
Goal: \[ (x_1 x_2 .. x_{n-1}) \leq (\frac{x_1 + x_2 + .. x_{n-1}}{n-1})^{n-1} \]
\[ (C^{\times}) \leq (\frac{C^+ }{n-1})^{n-1} \tag{Goal} \]
- Find starting point:
- \((x_1 x_2 .. x_{n-1})\)
- Notice similarity of IH LHS \((x_1 x_2 ..x_{n-1} x_n)\) with starting point
- We can FREELY add one more variable/expression \(\framebox{}\) to starting point so we can use IH. How do we Choose?
2.1 Pause Real Proof: Reverse meta-Rewrite Goal
Find an expression that fits the criteria to use \((IH)\) : \[(x_1 x_2 .. x_{n-1}\times\framebox{}) \leq (\frac{x_1 + x_2 + .. x_{n-1}+ \framebox{}}{n})^{n} \tag{1}\]
Relating IH back to the Goal :
Algebraic manipulation: multiply bothside of \((Goal)\) with \(\framebox{}\)
\[(x_1 x_2 .. x_{n-1}\times\framebox{}) \leq \framebox{}\times(\frac{x_1 + x_2 + .. x_{n-1}}{n-1})^{n-1}\tag{2}\]
Combined (1) and (2):
Meta-choose the non-striked out combination because it leads us closer to our goal.
How did we get that equation? It’s a Meta-choice, meaning later in the real proof we HOPE to achieve this equation .
\[\xcancel{(x_1 x_2 .. x_{n-1}\times\framebox{}) \leq \framebox{}\times(\frac{x_1 + x_2 + .. x_{n-1}}{n-1})^{n-1} \leq(\frac{x_1 + x_2 + .. x_{n-1}+ \framebox{}}{n})^{n}}\]
\[(x_1 x_2 .. x_{n-1}\times\framebox{}) \leq (\frac{x_1 + x_2 + .. x_{n-1}+ \framebox{}}{n})^{n}\leq \framebox{}\times(\frac{x_1 + x_2 + .. x_{n-1}}{n-1})^{n-1}\tag{3}\]
New Goal by multiplying \((3)\) by \(\frac{1}{\framebox{}}\):
\[ (x_1 x_2 .. x_{n-1}) \leq (\frac{1}{\framebox{}})(\frac{x_1 + x_2 + .. x_{n-1}+ \framebox{}}{n})^{n} \leq (\frac{x_1 + x_2 + .. x_{n-1}}{n-1})^{n-1}\tag{4}\]
Thoughts:
- Find syntatic similarity of the three expression in goal.
- \(x_1 + x_2 + .. x_{n-1}\)
- Renaming
- \(A = x_1 + x_2 + .. x_{n-1}\)
Renamed Goal: \[ (x_1 x_2 .. x_{n-1}) \leq (\frac{1}{\framebox{}})(\frac{A + \framebox{}}{n})^{n} \leq (\frac{A}{n-1})^{n-1}\tag{Renamed(Goal)}\]
Try: \(\framebox{} = \frac{A}{n-1}\)
- Backenvelop calculations to see where this could go:
- \(\frac{A + \framebox{}}{n} =\frac{A+\frac{A}{n-1}}{n} = \frac{\frac{An-A+A}{n-1}}{n}=\frac{A}{n-1}\)
- Looks good
2.2 Resume Real Proof
Solving Goal:
\[(x_1 x_2 .. x_{n-1}) \leq (\frac{1}{\frac{A}{n-1}})(\frac{A}{n-1})^{n}\leq (\frac{A}{n-1})^{n-1}\]
\[(x_1 x_2 .. x_{n-1}) \leq (\frac{A}{n-1})^{-1}(\frac{A}{n-1})^{n}\leq (\frac{A}{n-1})^{n-1}\]
\[(x_1 x_2 .. x_{n-1}) \leq (\frac{A}{n-1})^{n-1}\leq (\frac{A}{n-1})^{n-1}\]
Backtrack Meta:
Reverse operation fill in \(\framebox{}\) in \((1)\) to get our \(new IH\)
\[x_n = \frac{A}{n-1}\]
\[(x_1 x_2 .. x_{n-1}\frac{A}{n-1}) \leq (\frac{x_1 + x_2 + .. x_{n-1}+ \frac{A}{n-1}}{n})^{n} \tag{new IH}\]
3 Step 3 Combining results from Upwards and Downward induction
QED Combining Upward and Downward induction constitutes a full proof the inequality is true for all naturals.
4 Aside
- Why are we allowed to just set \(x_n\) as \(\frac{A}{n-1}\) ?
- Doesn’t this break the arbitrary-ness of \(x_n\) ?
- We are not doing \(\forall n \in \mathbb{N} ( P(n) \rightarrow P(n-1)\)
- We are doing $n ( x {x_1..x_n} P(x) x {x_1..x_{n-1}} P(x))
- Intuitively, if AMGM prop is true for ANY n-arguments, then AMGM prop is true for ANY (n-1)-arguments.
- This means we get the free IH \(\forall x \in \{x_1..x_n\} P(x)\) which allows us to set \(x_n\) as anything we want