HomSet

Posted on March 1, 2020
Tags: typetheory

HomSet in programming terms are simply the types of the functions.

Nested HomSets are simply the types of curried functions.

0.0.1 Translate Homset to function type notation

\[ f :: A \rightarrow B := f \in Hom(A, B) \] \[ f :: A \rightarrow (B \rightarrow C) := f \in Hom(A, Hom(B,C)) \] \[ f :: (A \rightarrow B) \rightarrow C := f \in Hom(Hom(A,B),C) \]


0.0.2 Free Monoid

The Free Monoid on the alphabet results in the set of all possible words/strings created from the alphabet.

0.0.2.0.1 Free monoid on number

Addition mod 2 group is a category

  • 1+1 = 0
  • 1+0 = 1

Category

  • object : T
  • morphisms: numbers {0,1}
  • composition: addition
  • Identity morphism: 0

Checking composition: (1+1)+1 = 1+(1+1)


1 Cubical Type Theory