Lattices

Posted on March 1, 2020
Tags: typetheory
L \(\sqsubseteq\) \(\sqcap\) \(\sqcup\) \(\bot\) \(\top\)
Bool implies and or false true
Reals \(\leq\) min max \(-\infty\) \(\infty\)
Nat divides gcd lcm 1 0

Ordering : a relation \(\sqsubseteq :: L \times L \rightarrow Bool\) that satisfy the refl,trans,antisym

\[refl:\ a\sqsubseteq a \qquad trans:\ a\sqsubseteq b \land b \sqsubseteq c \rightarrow a \sqsubseteq c \qquad antisym:\ a \sqsubseteq b \land b \sqsubseteq a \rightarrow a \equiv b\]

Bounded : \(\top,\bot \in L\) that are the upper,lower bounds of ALL elements in L

lattice : meet, join \(\sqcap,\sqcup :: L \times L \rightarrow L\) monoidal operations

\[ a \sqsubseteq c \land b \sqsubseteq c \iff a \sqcup b \sqsubseteq c \]

\[ c \sqsubseteq a \land c \sqsubseteq b \iff c \sqsubseteq a \sqcap b \]

1 Examples

2 Laws of Meet and Joins

:Symmetry * min(a,b) = min(b,a) * max(a,b) = max(b,a) * gcd(a,b) = gcd(b,a) * lcm(a,b) = lcm(b,a)

Associativity

Idempotency

Zero

Identity

Absorption

Weakening