Mathematica - Binomial Theorem = Probability, Search algo visualization

Posted on April 4, 2021
Tags: mathematica

1 Binomial Theorem and Probability

Binomial Coefficient tells us:

Column[Table[Binomial[n, k], {n, 0, 5}, {k, 0, n}], Center] // TeXForm
$$\begin{array}{c} \{1\} \\ \{1,1\} \\ \{1,2,1\} \\ \{1,3,3,1\} \\ \{1,4,6,4,1\} \\ \{1,5,10,10,5,1\} \\ \end{array}$$

Notice the distribution of {1,5,10,10,5,1} looks like a probability distribution

Binomial[5,#1]& /@ Range[0,5]
{1, 5, 10, 10, 5, 1}

Notice sum over \(\sum_{k\in 0..n}{n \choose k}\) equals \(2^n\)

Total[Binomial[5,#1]& /@ Range[0,5]]==Inactivate[2^5] // TeXForm
$$32=2{}^{\wedge}5$$
Row[{ListLinePlot[Binomial[3,#1]& /@ Range[0,3] ],
ListLinePlot[Binomial[7,#1]& /@ Range[0,7] ],
ListLinePlot[Binomial[10,#1]& /@ Range[0,10] ],
ListLinePlot[Binomial[15,#1]& /@ Range[0,15] ],
ListLinePlot[Binomial[25,#1]& /@ Range[0,25] ],
ListLinePlot[Binomial[50,#1]& /@ Range[0,50]&[0] ]
}]
Output

2 Search Algorithms

Intuitive Solution:

Partition[Tuples[{Range@5,Range@5}],5] // TeXForm
$$\left( \begin{array}{ccccc} \{1,1\} & \{1,2\} & \{1,3\} & \{1,4\} & \{1,5\} \\ \{2,1\} & \{2,2\} & \{2,3\} & \{2,4\} & \{2,5\} \\ \{3,1\} & \{3,2\} & \{3,3\} & \{3,4\} & \{3,5\} \\ \{4,1\} & \{4,2\} & \{4,3\} & \{4,4\} & \{4,5\} \\ \{5,1\} & \{5,2\} & \{5,3\} & \{5,4\} & \{5,5\} \\ \end{array} \right)$$
tx = RandomInteger[{1,1000},10];

Style[Row[{
MatrixPlot[Table[x+y,{x,tx},{y,tx}],ColorFunction->Hue]
MatrixPlot[Table[x+y,{x,Sort[tx]},{y,Sort[tx]}],ColorFunction -> Hue]
MatrixPlot[Table[x+y,{x,0,10},{y,0,10}],ColorFunction->Hue]
}],ImageSizeMultipliers->{0.4, 0.4}]
Output
Partition[Table[x+y,{x,Sort[tx]},{y,Sort[tx]}],10] // MatrixForm // TeXForm
$$\left( \begin{array}{cccccccccc} \left( \begin{array}{c} 106 \\ 136 \\ 388 \\ 448 \\ 494 \\ 507 \\ 575 \\ 896 \\ 933 \\ 969 \\ \end{array} \right) & \left( \begin{array}{c} 136 \\ 166 \\ 418 \\ 478 \\ 524 \\ 537 \\ 605 \\ 926 \\ 963 \\ 999 \\ \end{array} \right) & \left( \begin{array}{c} 388 \\ 418 \\ 670 \\ 730 \\ 776 \\ 789 \\ 857 \\ 1178 \\ 1215 \\ 1251 \\ \end{array} \right) & \left( \begin{array}{c} 448 \\ 478 \\ 730 \\ 790 \\ 836 \\ 849 \\ 917 \\ 1238 \\ 1275 \\ 1311 \\ \end{array} \right) & \left( \begin{array}{c} 494 \\ 524 \\ 776 \\ 836 \\ 882 \\ 895 \\ 963 \\ 1284 \\ 1321 \\ 1357 \\ \end{array} \right) & \left( \begin{array}{c} 507 \\ 537 \\ 789 \\ 849 \\ 895 \\ 908 \\ 976 \\ 1297 \\ 1334 \\ 1370 \\ \end{array} \right) & \left( \begin{array}{c} 575 \\ 605 \\ 857 \\ 917 \\ 963 \\ 976 \\ 1044 \\ 1365 \\ 1402 \\ 1438 \\ \end{array} \right) & \left( \begin{array}{c} 896 \\ 926 \\ 1178 \\ 1238 \\ 1284 \\ 1297 \\ 1365 \\ 1686 \\ 1723 \\ 1759 \\ \end{array} \right) & \left( \begin{array}{c} 933 \\ 963 \\ 1215 \\ 1275 \\ 1321 \\ 1334 \\ 1402 \\ 1723 \\ 1760 \\ 1796 \\ \end{array} \right) & \left( \begin{array}{c} 969 \\ 999 \\ 1251 \\ 1311 \\ 1357 \\ 1370 \\ 1438 \\ 1759 \\ 1796 \\ 1832 \\ \end{array} \right) \\ \end{array} \right)$$