ASDBIPAD
Posted on January 1, 2002
Tags: rawhtmldemo
1 Binomial Theorem and Probability¶
Binomial Coefficient tells us:
- Number ways to pick k-length subsets of a n-length set
- Number of k -> n functions but
In [2]:
Column[Table[Binomial[n, k], {n, 0, 5}, {k, 0, n}], Center]
Out[2]:
Notice the distribution of {1,5,10,10,5,1} looks like a probability distribution
In [16]:
Binomial[5,#1]& /@ Range[0,5]
Out[16]:
{1, 5, 10, 10, 5, 1}
Notice sum over \(\sum_{k\in 0..n}{n \choose k}\) equals \(2^n\)
In [6]:
Total[Binomial[5,#1]& /@ Range[0,5]]==Inactivate[2^5]
Out[6]:
In [10]:
ListLinePlot[Binomial[3,#1]& /@ Range[0,3] ]
Out[10]:
In [12]:
ListLinePlot[Binomial[7,#1]& /@ Range[0,7] ]
Out[12]:
In [13]:
ListLinePlot[Binomial[10,#1]& /@ Range[0,10] ]
Out[13]:
In [14]:
ListLinePlot[Binomial[15,#1]& /@ Range[0,15] ]
Out[14]:
In [15]:
ListLinePlot[Binomial[25,#1]& /@ Range[0,25] ]
Out[15]:
In [ ]: